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Abstract

Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating
Boussinesq equations are analyzed in the asymptotic limit of strong stratification in the Burger number
of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It
is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the
full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with ver-
tical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes
on inertial-gravity waves are evidenced. The ‘split’ of the energy transfer of the vortical and the wave
components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero
to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy
spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the
anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. In-
termediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where
the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation)
of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical
viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and

geostrophic departure) are obtained.
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1 Introduction

The turbulent flows that are subject to rotation and stratification have many important applications in
geophysics and engineering (Fernando and Hunt, 1996; Hopfinger, 1989). An important class of geophysical
flows can be characterized as strongly rotating and strongly stratified with both effects playing an important
role in the dynamics. This 1s the so called Burger number of order one regimes where the effects of rotation
and stratification enter at the same order in asymptotics (McWilliams 1985). One of the major difficulties
encountered in understanding dynamics of geophysical flows is the influence of the oscillations generated by
the rotation and stratification. One major effect of rotation and stratification is through “phase scrambling”
for the wave phase. In this paper rotating Boussinesq equations are analyzed in the asymptotic limit of
strong stratification in the Burger number of order one situation as well as in the asymptotic regime of
strong stratification and weak rotation.

The very useful and thought provoking multi-scale analyses of rotating/stratified turbulence is presented
in Riley et al. (1981), Lilly (1983), McWilliams (1985). In particular, they argue that the velocity field
of a rotating, stably stratified fluid may be regarded as a superposition of waves which are modulated on
the longer turbulence time scale. In our approach, the collective contribution to the dynamics made by
waves is accounted for by rigorous KAM (Kolmogorov-Arnold-Moser) type theory and rigorous estimates
of wave resonances and quasi-resonances via small divisors analysis. Our theory handles rigorously 3-waves
resonances, but goes much deeper into the structure of quasi 3-wave resonances and their contributions.
This mathematical approach was initiated in Babin, Mahalov and Nicolaenko (henceforth BMN) (1995),
Mahalov and Marcus (1995) in the context of geophysical flows. In Bartello (1995), the relative physical
importance of different resonances is discussed in depth. In this paper we present the physical predictions
and implications of our rigorous mathematical analysis. Interactions between internal waves and the vortical
(quasi-geostrophic) modes remain as one of the important questions to be addressed by strong interaction
theory (Miiller, Holloway et al., 1986; Warn, 1986; Farge and Sadourny, 1989; Lelong and Riley, 1991).

The governing flow equations for rotating stably stratified fluids under the Boussinesq approximation are

HU+U-VU+20e3 x U= —Vp+pi e5, V-U =0, (1.1)

Op1 +U-Vp = —NZU?, (1.2)

where rotation and mean stratification gradient are aligned parallel to e3 = [0, 0, 1]. Here U = (UL, U2 U3) is
the velocity field and p; is the buoyancy variable; Ny is the Brunt-Vaisala frequency for constant stratification
and Qg is the frequency of background rotation, fo = 2. We focus on inviscid Egs. (1.1)-(1.2) or with

small uniform viscosities.



Now we introduce useful non-dimensional parameters. Let U, be a characteristic horizontal velocity
scale. Let H and L be vertical and horizontal length scales and as = H/L is the aspect ratio parameter. We

define Froude numbers based on horizontal and vertical scales:

F,=U,/LNy=1/N, F, =U,/HNy = Fy/as. (1.3)
The classical Rossby and anisotropic Rossby number are defined as follows

Ro=U, /2Ly =1/2Q=1/f, Ro, = as Ro. (1.4)

The time is dimensionalized using the turbulence time scale L/Uj. In the Burger O(1) regime Ro, ~ Fj.
We are not taking asz — 0; rather its value is fixed by shallowness of the atmosphere, az ~ 5 x 1073 to 1072
for synoptic scales. Its smallness effectively downsizes Ro, ~ 5 x 1074 to 1073, as Ro ~ 0.1 in midlatitudes.
For mesoscales, I ~ 100km, az ~ 107! and Ro, ~ 1072. The anisotropic Rossby number Ro, or/and the
vertical Froude number F, control our uniform error estimates.

The Burger number characterizes relative importance of the effects of rotation and stratification (McWilliams,

1985):
Bu = Ro2/F? = Ro*/F? = N*%a3/f* = Nia3/f?. (1.5)

In Egs. (1.3)-(14) f = Ro™! and N = Fh_1 are dimensionless rotation and Brunt-Vaisala parameters,
respectively. The relative importance of rotation/stratification is measured by the Burger number with
Bu << 1 corresponding to rotation dominated and Bu >> 1 corresponding to stratification dominated
flows. Herring and Métais (1989) observed horizontal layering of the velocity field in numerical simulations
of stratified turbulence, while Bartello et al. (1994) noted the formation of quasi-two-dimensional structures
in rotating turbulence.

Fourier series will be used in this paper to represent physical fields in a parallepiped [0, 27] x [0, 27/az] X
[0,27/as], 0 < as < 1. We denote ko/as by ko, ks/as by ks. Following Bartello (1995), it is useful
to distinguish between three sets of wavevectors k = (ki,ka/as, ks/as), |k|*> = kI + k3/a3 + k3/a3: the
barotropic set {k : ks = 0}, the set with only vertical variability {k : k& = k2 = 0}, and the remaining
baroclinic vectors {k : k¥ + k3 # 0,ks # 0}. Then the operation of vertical averaging corresponds to
projection on barotropic fields; the operation of horizontal averaging corresponds to projection on fields with
only vertical variability. In this paper as well as in our previous work (BMN, 1996a, b, d) we emphasize the
wmportant role of operations of vertical and horizontal averaging in investigations of rotating and stratified
flows.

Regimes of geophysical dynamics presenting the global picture for small Froude or Rossby numbers are

shown in Figure 1 which summarizes the physical implications of our mathematical analysis. Since we are
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Geophysical Dynamics: the global picture for small Froude or small Rossby regimes.



not taking ag — 0, either F} or F, can be used in description of asymptotic regimes. Then Fr denotes
either of these numbers. The rotation dominated case corresponding to Ro, — 0, Bu — 0 and F'r finite
was considered in BMN (1995), Zhou (1995), BMN (1996a, ¢, d, e), Mahalov and Zhou (1996) (Figure
1, vertical axis). In this case we proved the generalized Taylor-Proudman theorem establishing splitting
between vertical averages of U, p; (two dimensional- four component, 2D-4C barotropic fields) and reduced
ageostrophic field. Following Reynolds and Kassinos (1996) 2D-4C refers to fields with four components
depending on two variables z; and zs; 3D-2C refers to fields with two components depending on three
variables 1, x5 and z3 etc. By splitting we mean that the barotropic field decouples from the ageostrophic
one, without feedback from the latter onto the former, to the lowest order. In the limit N — 0, the usual
quasi-geostrophic field does reduce to vertically averaged fields; this is what is meant by “geostrophic” in this
limiting context. In this limit vertical shearing is fully controlled which is reflected in adiabatic invariants

associated with vertical shearing (exact conservation laws in reduced equations), with Ut = (U, p1)

d [ ouU

In the limit N — 0 the temperature decouples from the dynamics and behaves as a passive scalar. The
dynamics of vertically averaged velocity fields reduce to classical 2D-3C Euler equations and are subject
to inverse energy cascades in U', U? as in 2D turbulence. For Bu — 0 we have shown rigorously that
energy cascades for the ageostrophic (AG) field are completely frozen in 23 and the dynamics is pure phase
turbulence (BMN, 1996a,c,d,e); freezing of energy cascades in 3 for the “baroclinic” component follows
from (1.6). In pure phase turbulence, the amplitudes of the ageostrophic modes remain constant in absolute
values; turbulent dynamics are restricted to the phases of the ageostrophic modes. The ageostrophic field is
phase locked to phases associated with vertically averaged vertical vorticity and vertical velocity which are
advected by 2D turbulence of vertically averaged fields. There is no slaving of the amplitudes of ageostrophic
modes by the 2D turbulence, only phase locking. We calculated Doppler phase shifts induced by turbulence
of vortical (vertically averaged) fields on inertio-gravity waves in this limit. In the case of 3D rotating Euler in
the small anisotropic Rossby number situation we described regimes with no energy flux in the ageostrophic
(AG) component and formation of KAM-type regimes with frozen in #3 ageostrophic cascades (pure phase
turbulence, frozen turbulence). Similar freezing of energy cascades was observed by Farge (1988) in the
context of rotating shallow-water equations and in Pushkarev and Zakharov (1996) in numerical experiments
describing turbulence of capillary waves.

Next is the regime of strong rotation and weak stratification as shown in Figure 1. Besides the operation
of vertical averaging there is a piece of 3DQG (quasi-geostrophic, Pedlosky 1987) which plays an important
role in the dynamics. It is formally obtained by expanding 3DQG equations in a small parameter N/ f.



This procedure is similar to the one described in Section 4 for the regime of strong stratification and weak
rotation. The corresponding reduced equations, higher order corrections and mathematical convergence
results for the case of balanced and unbalanced initial data are presented in Avrin, Babin, Mahalov and
Nicolaenko (henceforth ABMN) (1996).

As the effects of stratification are increased further (see Fig. 1) AG cascades become possible. In the
limit of strong rotation and strong stratification corresponding to Ro, — 0, Fr — 0, but Bu = O(1)
we established splitting between 3DQG and the reduced ageostrophic field (BMN, 1996b) confirming the
similar splitting for rotating shallow-water equations which we obtained in Mahalov and Marcus (1995)
and for rotation-dominated case in BMN (1995), (1996a). Again, by splitting we mean that the QG field
decouples from the ageostrophic one. Dynamics of AG further splits along uncoupled resonant quadruplets of
Fourier rays with AG energy conserved on each resonant quadruplet of rays. Energy cascades are now allowed
(unfrozen) for the ageostrophic field but they are restricted to families of 4 rays in Fourier space. Energy
transfers (direct and inverse cascades) are not prohibited but restricted on uncoupled families of resonant
four rays for AG field. Direct energy cascades of AG field provide mechanism for nonlinear geostrophic
adjustment. This 1s fundamentally different from the rotation dominated regimes where AG cascades are
frozen. Spectral differential molecular viscosities for QG and AG fields with explicit dependence on the
rotation/stratification parameters behave differently. Let v1 and vs be the kinematic viscosity and the heat
conductivity, respectively; the ratio v1/vs is known as the Prandtl number. Through a simple computation
of 2-wave resonances in the Craya-Herring basis (Lesieur, 1987) the effective differential spectral molecular
viscosities vgg and v4¢ are given by
o
[+ 2

where pp = f/N, |/|? = n? + n3/a3. It shows that dissipation affects QG and AG fields differently. This

vog(n) = vs + (11 — 1v2) - vag(n) = v+ (v2 — 1) (1.7)

impacts on direct numerical simulations of QG fields in the context of numerical simulations of atmospheric
flows.

Partial control of vertical shearing is obtained allowing us to prove long time existence of solutions of
inviscid Boussinesq equations (BMN, 1996b and Section 6). Also, a flow which is initially wave dominated
remains wave dominated even through decay (confirming Métais et al., 1996). In Section 3 we show that
horizontally averaged buoyancy variable p; is an adiabatic invariant (this result is true for all resonances
including 3 wave resonances); we calculate Doppler phase corrections associated with %p’l to a linear profile
(constant Np). This confirms and generalizes the work of Legras (1980) on phase shifts who showed the
existence of statistical dephasing effects induced by turbulent processes on Rossby waves. Frequency shifts
induced by turbulent processes on inertial waves were calculated in BMN (1996a); the case of frequency

shifts induced on waves in rotating shallow-water equations was considered in BMN (1996¢, ). As the



effects of stratification are increased (see Fig. 1) vertical shearing dynamics in the ageostrophic field increase
and is conveniently characterized using the divergent velocity potential x (¢, z1, 22, 23) given by the formula
X = (—Ay)710U?3/dxs which is coupled to geostrophic departure. The geostrophic departure —V3p; +
faixacurlU - e3 characterizes imbalance in the vertical motion or omega equation (Eqgs. (1.16)-(1.17)). Up
to a normalization, the divergent velocity potential y, the geostrophic departure and 3DQG mode form the
Craya-Herring cyclic basis which is used in this paper to represent physical fields. This is further described
below.

In the inviscid regime F'r — 0, Ro, = O(1), Bu — 400 (Figure 1, horizontal axis) we prove that there is
no bound on vertical shearing associated with the dynamics of 3D-2C (3 dimensional, 2 components) decou-
pled pancakes (parametrized in z3) with different pressures at every level; this leads to unbalanced dynamics
at the lowest order. There is no saturation of the exponential build-up of vertical enstrophy (in small vertical
scales) for AG dynamics as the latter is coupled to the quasi 2D field thru 3Ué2D/3x3, 3U%2D/3x3. The
major problem is lack of boundedness of vertical shearing in quasi 2D equations (Lilly, 1983). We show that
horizontally averaged U'(x3), U?(x3), p1(x3) are adiabatic invariants providing a feedback onto AG turbu-
lence. U', U? are adiabatic invariants only if Q = 0; otherwise, they undergo rigid Q- rotation (this result
holds for all resonances including the 3 wave resonances). However, these adiabatic invariants are not enough
to saturate vertical shearing. Worse the lack of boundedness of 3U52D/3x3, 3U52D/3x3 leads to explosive
exponential growth of the AG dynamics. Of course, control of vertical shearing can be achieved trivially by
introducing vertical viscosity; however, this corresponds to a non-physical laboratory set-up rather than the
real atmosphere (A. Majda, private communication), or a poorly-resolved (in #3- scales) numerical model
(P. Bartello, private communication).

In the intermediate asymptotic regime corresponding to strong stratification and weak rotation (Bu —
+00, f/N small) the effects of weak rotation on the dynamics are accounted for by an asymptotic expansion
in a small parameter g = f/N (Section 4). Full saturation of vertical shearing is obtained for all times.
Equations describing balanced dynamics are intermediate between 3DQG equations valid in the regime Bu =
O(1) and quasi-2D decoupled pancakes without any control of vertical shearing (Lilly, 1983). In this paper we
show how weak rotation regularizes vertical shearing and calculate its effects on AG dynamics. Our reduced
equations have a conservation law associated with vertical shearing which allows to control AG vertical
scales for all times. There is no need to resort to vertical viscosity as the principal stabilizing mechanism
(Reynolds number Re ~ 10'? in atmospheric flows). Two scalar decoupled equations for ageostrophic
components (divergence velocity potential and geostrophic departure) are obtained. These equations have
coefficients depending on regularized quasi-2D fields and can be used for more accurate and robust numerical

simulations of geophysical flows in the regime of strong stratification and weak rotation. AG dynamics is



driven by regularized vertical shearing of the pancakes.

In this paper we emphasize physical predictions which follow from rigorous mathematical analysis of
Boussinesq equations in the strongly rotating/stratified Bu = O(1) regime as well as in the asymptotic
regime of strong stratification and weak rotation. The mathematical theory is based on rigorous small divisor
estimates and KAM type (Kolmogorov-Arnold-Moser) theoretical considerations to rigorously control wave
resonances, especially the 3-waves of the fast-fast-fast resonances (Figure 2).

On the physical side, for the Bu = O(1) regimes discussed in Sections 3 and 5, we establish statistical
dephasing effects induced by turbulent processes on inertio-gravity waves with 3DQG turbulence acting to
renormalize both frequency and viscosity of the waves. We generalize the work of Legras (1980), Carnevale
and Martin (1982). In particular, we calculate Doppler phase corrections associated with the fact that
horizontally averaged buoyancy variable p; is an adiabatic invariant. Namely, g1 (23) has a O(e) variation on
large times when Ro, ~ Fj, ~ €. Rigorous mathematical analysis based on small divisor estimates shows that
3 waves fast-fast-fast resonances are rare in the Bu = O(1) atmospheric regimes (BMN, 1996b and Section
6) as well as in Bu << 1 regimes (BMN, 1996a). In fact, just switching on even weak rotation destroys
the 3-waves resonances found in the pure stratified case f = 0. One of the hardest parts of our analysis is
to estimate the total probabilities of quasi-resonances, that is the width of Arnold tongues coming out of
points (set of measure zero) where 3 wave resonances are possible (see Figure 2). These resonances are not
neglected but rather weights are assigned to them according to their importance (BMN, 1996d and Section
6). Even 3 waves resonances do not alter the global picture: they correspond to higher order corrections
(“Arnold drift”).

The width of Arnold tongues scales algebraically with Ro, (see Corollary 6.1 and Figure 2). For synoptic
scales at midlatitudes, L ~ 2000 km, H = 10 km, the width (normalized probability of a 3 wave resonance)
is of order (H/L)? = (5 x 1072)? and it is of order (1072)? at mesoscales (L ~ 100 km); 3 wave interactions
become significant only for tall columns (see Section 6). In regions free of fast-fast-fast interactions (set of
full Lebesgue measure) nonlinear geostrophic adjustment takes place via “catalytic” interactions between one
QG mode and two AG modes confirming the insight and numerical simulations of Bartello (1995). Bartello
(1995) also discusses fast-slow-slow interactions, which are non-resonant. In our work, they appear at the
next order in Ro, or 1/N at Bu = O(1), and contribute to the feedback of the ageostrophic field onto
the QG one (ABMN, 1996). Inside Arnold tongues where fast-fast-fast 3 wave interactions are possible we
expect Arnold drifts associated with neglected higher order resonances. Guided by KAM theory in finite
dimensional systems and the fact that Arnold tongues are very narrow in our problem (Section 6), we expect
that these drifts will be slowly evolving (cf. Figure 2). Thus we expect the dynamical picture to be intact even

inside Arnold tongues where 3 wave interactions are possible. Our analysis (Section 6) proves that 3 wave
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interactions will not contaminate large scale dynamics. Breakdowns can occur only locally corresponding to
small horizontal scales. In this case a local anisotropic Rossby number based on local horizontal scale will
become large and both local breakdown and collapse leading to fully 3D dynamics (locally) will be possible.
We have analyzed such 3D instabilities in an idealized case of rotating columnar flows (Mahalov, 1993). Here
our rigorous mathematical analysis amounts to the following: the probability of such a localized breakdown
to 3D turbulence to extend to larger scales via a catastrophic inverse cascade is very small. This is indeed
what is observed in the atmosphere, where near balanced dynamics are sustained for all times in the larger
scales. The regime Fr — 0, Ro, = O(1), Bu — oo requires a special attention. In this regime 3DQG
equations degenerate to quasi-2D equations lacking control of vertical shearing and leading to unbalanced
dynamics at the lowest order. To this end, a regularization based on weak rotation i1s proposed in Section 4.

In BMN (1996b) we established splitting between 3DQG and reduced ageostrophic field; here we show
that the structure of reduced ageostrophic equations (via Craya-Herring cyclic basis) implies upscale (inverse)
energy transfer of rotational (vortical) energy via QG mode versus downscale cascade of wave energy via
slow-fast-fast resonant catalytic interactions (following Bartello, 1995 notations). In cases Bu = O(1) and
Bu >> 1, AG field satisfies uncoupled families of equations on 4 rays in Fourier space. As the effects of
stratification are increased direct cascade of AG energy (along these rays) toward small scales is enhanced.
In Section 5 we introduce the anisotropic phase coherence tensor and model anisotropy in Bu = O(1) regimes
of geophysical turbulence. There is a spectral gap (i.e. a power law scaling break) between QG and AG
spectrum with AG spectrum being shallower than the typical k=3 QG spectrum; it varies smoothly between
k=2 and k~5/3 which is in agreement with numerical simulations of Métais et al. (1996), Bartello et al.
(1996).

A possible emerging picture of Burger O(1) turbulence is that 3DQG turbulence being a guiding center is
corrupted by phase turbulence and Doppler phase shifts; with the dynamics of the AG field being constrained
to a uncoupled 4-rays families, with direct AG cascade restricted to the latter. The feedback of AG field on
QG dynamics can be computed at next order in Fr or Ro, (ABMN, 1996).

On the mathematical side, the challenge is to prove that dynamics of limit equations uniformly closely
approzimate geophysical turbulence in regimes:

1. N =0(1),  >> 1 (rotation dominated regime), Fr =1/N.
2. N>>1,Q>>1, Bu=0(1) (strongly rotating/stratified Burger number of order one regime).

One needs uniform error estimates in Froude and Rossby numbers. It is important to realize that “weak”
convergence results, “filtered” and o(1) error estimates cannot achieve this. In BMN (1996 a,b,d) and here
(Section 6) we obtain strong convergence results with uniform error estimates on sets of full Lebesgue measure

with initial data being in the Sobolev space H” (and even H*) for both Bu = O(1) and rotation dominated



regimes. This is in contrast with the work of Embid and Majda (1996) where only local existence results are
established. Following general theorems of Schochet (1994), they state a pointwise convergence theorem with
o(1) error on a time interval [0, 7T]; since they include (for Bu = O(1)) 3-wave resonances they cannot give
any uniform error estimates in the parameters. Our theory handles rigorously 3-waves resonances, but goes
much deeper into the structure of quasi 3-wave resonances and their contributions. Moreover, the interval
[0, 7] in Embid and Majda (1996) is small where T' can be as bad as any local time of existence of original
3D Fuler/Boussinesq equaltions, and it is in fact limited by potential 3D vortex singularities of the full 3D
Euler. Embid and Majda (1996) miss the regularizing effects of strong rotation and stratification. As Ro,
and Fp, — 0, Bu = O(1) we prove that T — +oo for (1.1)-(1.2). We agree with them only as to the QG
operator decoupling, which we obtained independently in BMN (1996b) for Boussinesq equations.

Now we describe the structure of reduced equations which will be derived in Section 3 for Bu = O(1).
In the reduced equations the total velocity splits into the quasi-geostrophic field wge (t) satisfying 3DQG

(quasi-geostrophic) equations
dwoe = B1(woa, Wwoa), (1.8)
and the ageostrophic component satisfying in principle general equations of the type:
Owac =Ba(woa, Waa) + Bs(Wag, wag). (1.9)

In the case when the balanced QG dynamics are absent, wo(t) = 0, Egs. (1.9) reduce to equations describing
wave turbulence (e.g. Zakharov et al., 1992):

Ohwac = Bs(Wac, Wac). (1.10)

We prove that (1.9) holds only within very narrow Arnold tongues (Figure 2) with infinitesimal probability
(Section 6); we do not just drop Bz with some ad-hoc scaling argument. In the real atmosphere situation a
near balance state is sustained and the quasi-geostrophic (balanced) field is present and it is dominant. In
Babin, Mahalov and Nicolaenko (1996b) and here (Section 6) it is shown using small divisor estimates that

for almost all Bu and az = H/L only “catalytic” interactions rule AG dynamics:
dhwag = Ba(wqa, Wac) (1.11)

where wga(t) is a solution of 3DQG equations. Such interactions do not influence the slow QG modes, but
act to transfer fast AG energy downscale (Bartello, 1995). Further, for all Bu, all az and almost all domain

aspect ratios as, Bo(wga, Waq) splits in Fourier space into uncoupled, restricted interaction operators on 4
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rays families

mi :|:1 0 0 n
Mo = 0 =+1 0 ny |- (1.12)
ms 0 0 +1 ns

In Egs. (1.11) direct cascades of energy are allowed for w4 through Ba(wga, wag). Wave energy cascades
toward smaller scales and 1s subject to strong dissipation in AG mode, via the anisotropic viscosity vag
in (1.7).

An important observation on the nature of interactions in Egs. (1.11) and their impact on AG dynamics
(AG cascades/frozen AG turbulence) is now in order. The nature of interactions in Eqs. (1.11) is funda-
mentally different in rotation dominated and stratification dominated regimes. In the rotation dominated
case (see Fig. 1) corresponding to Ro, — 0, Bu — 0, and Fr finite interactions in Egs. (1.11) for n-
th, n = (n1,n2, ng) Fourier mode are restricted to wavenumbers mm = (my, a2, h3) satisfying ms = +ns,
|| = |7'], K4+ m = n (BMN, 1996a). Thus, modes m which interact with a given mode n lie on the same
energy shell as n. Interactions in (1.11) are localized in Fourier space and do not extend to zero or infinity.
This special nature of interactions in the rotation dominated regime implies freezing of energy cascades in
z3 in Eqgs. (1.11). Similar freezing of energy cascades of AG field (frozen AG turbulence) was proven for
rapidly rotating shallow-water equations in Mahalov and Marcus (1995), BMN (1996¢). In particular, it was
shown that in the case of rapidly rotating shallow-water equations interactions in 2/ = (n1, 22) AG equation
are restricted to wavenumbers ' = (my, 1ha) satisfying |/'| = |2/|, &' + m' = n'.

The nature of interactions in (1.11) drastically changes when stratification is increased (see Figure 1). As
shown in this paper, in the Bu = O(1) as well as Bu >> 1 regimes interactions for the n-th mode in (1.11)
are restricted to four rays families given by (1.12) for almost all as. Thus, interacting modes lie on families
of four rays connecting 0 and infinity in Fourier space. AG energy cascades are now possible along these
rays from small wavenumbers (large scales) to large wavenumbers (small scales).

Vertical shearing operations in Bo(wga, Wag) are conveniently expressed in terms of divergent velocity
potential x. We recall that y and ¢ are related to a horizontal velocity field Uy by the formula U, =
ez X Vpty + Vi x. The operator Ba(wga, wag) takes an especially simple form in the Craya-Herring cyclic

3
basis. In this basis the first component of wag is simply the divergent velocity potential x = (—Ap)~? agTAgG
or in Fourier space

M3 1 1
= —f—— 1.13
T )

where i/ = (n1,n2/as), and the components of the full field in the Craya-Herring basis are (w2, w!, w?).

2

. are the ageostrophic components. The

Here w? is the component of the quasi-geostrophic mode and w}, w
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important role of x in our AG operator B ties with the more classical theory of balanced models (Gent and
McWilliams, 1983a and 1983b) and the findings of Farge and Sadourny (1989), Farge (1988) on effects of
inertio-gravity waves and rotation on two-dimensional turbulence.

The second component w? of w4 in the Craya-Herring basis is related in a simple way to the vertical
motion or omega equation. We recall that the vertical velocity does not appear in 3DQG equations and the
whole purpose of manipulations leading to the omega equation is to obtain a diagnostic equation from which
vertical velocity component can be calculated (e.g. Holton, 1992; Gent and McWilliams, 1983a). We briefly
recall these calculations starting from Eqgs. (1.1)-(1.2) written in the form (fy = 2€)

U+ foes xU—pj e5=-Vp—U.VU, V-U =0, (1.14)

Oep1 + NEUP = —U - Vpy. (1.15)

First, we apply the operator fy45—curl to Eq. (1.14) and obtain a scalar equation by projecting the result on

3
T3

es. Then we apply horizontal Laplacian to Eq. (1.15). Recalling that curl(es x U) - ez = —g—[xjj, we obtain
by subtraction
_o? AR 26_2 3 _
A ( th-l-foa w3) = (NgVi+ fo3=5)U" =G (1.16)
x3 Oz

where (G denote nonlinear terms; ws = curlU - e3 is vertical component of the vorticity vector. The omega
equation is obtained by dropping d;(—V% p1 + fo 6%3(.03) in Egs. (1.16). Then we obtain a diagnostic equation
which is used to determine vertical velocity U3:
92

—(N3V7i + fga—x%)Ug =G. (1.17)
Up to a normalization constant, second mode in the Craya-Herring basis is precisely the geostrophic departure
—V?(buoyancy) —I—foa%a(vertical vorticity). It characterizes unbalance in Eqs. (1.16)-(1.17). The geostrophic
departure has the form |h’|2p17n — fong(n x UL) es= No|#t'|?pn — fona(n x UL) - ez in Fourier space. Since
No|#'|2pn — fons (i x UL) -e3= wp|n||7] UIL “gan, the geostrophic departure up to a normalization is precisely
the mode ¢z in the Craya-Herring cyclic basis (see Eqs. (2.9)).

This paper is organized as follows. In Sec. 2 we recast the Boussinesq equations in the Craya-Herring
cyclic basis. This intrinsic coordinate system is particularly convenient for investigations of adiabatic con-
servation laws and global decoupling. Next in Sec. 3, we develop a methodology and procedure for studying
rotating Boussinesq equations in the strongly stratified limit. Here, the dynamical decoupling between the
vortical and inertial-gravity wave components of the total field is achieved. It is shown that horizontally
averaged buoyancy variable is an adiabatic invariant in the asymptotic state and phase corrections to buoy-

ancy time scale which are associated with vertical shear of the horizontally averaged buoyancy are obtained.
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In Section 4 we analyze an intermediate asymptotic regime of strong stratification and weak rotation with
effective saturation of vertical shearing of pancakes by weak rotation (no vertical viscosity needed). The
energy spectrum and spectral eddy viscosity models are deduced in Section 5. Finally, in Section 6 we
describe the uniform convergence results and the regularization of Euler-Boussinesq equations, as Fj — 0,
Rog, — 0, Bu = O(1). These results require much less differentiability than in BMN (1996a): now only four

derivatives on initial data are required for the most general convergence results on arbitrary long times.

2 Boussinesq equations in the Craya-Herring cyclic basis

We introduce a change of variables p; = Np (Métais and Herring 1989) and combine velocity and buoyancy
variable in one variable UT = (U, p) after which Eqgs. (1.1)-(1.2) written in non-dimensional variables take

more symmetric form:
U +U.vU' + fRUT = —VIp - NSUT, V.U =0 (2.1)
where Vip = (Vp,0) and time was non-dimensionalized using turbulence time scale L/Uj. Here

J 0 0 0 0 -1
R = , S= , J = , (2.2)
00 0o J 1 0

and R,,, S,, will denote the action of R and S on n-th Fourier component, M = fR + NS. In this section
we write Boussinesq equations in the Craya-Herring cyclic basis and use this representation to perform time

averaging. Linear equations describing inertio-gravity waves are
9, Ut + MU' = —Vip V. U=0. (2.3)

Dispersion relation for inertio-gravity waves which are solutions of Eqs. (2.3) has the form
']

[

V2wl WP n
P V=N Bu —~ 2.4
A e TN (R R R 24

2 /.2
L IL BTy

2 _ 2
o= h wp

where |i|? = n? +ni/a3 +n3/a3, |W|* = n? + n3/ai. Here Ro, is the anisotropic Rossby number and Bu is
the Burger number defined by (1.4), (1.5). Tt follows from (2.4) that the effect of rotation and stratification
are not uniform on scales. In the case |2/|/|ns| >> 1 gravity waves are fast and inertial waves are slow.
On the other hand, for scales satisfying |ng|/|7/| << 1 gravity waves are slow and inertial waves are fast.
Control of resonances coupling fast waves on small scales and fast waves on large scales can only be achieved
through a careful analysis of small divisors in resonances (BMN, 1996 a, b, d and Section 6).

The inertio-gravity wave propagator is the operator solution E(¢) (E(0) = Id is the identity) to the linear
problem (2.3):

B(t) = B()®o; @(0) = @y (2.5)
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where ®(¢) = (U(¢), p(t)). The operator E(t) describes propagation of inertio-gravity waves. In the Craya-
Herring cyclic basis (Riley et al. (1981), Métais and Herring (1989), Godeferd and Cambon (1994) present
developments in this basis for stratified flows without rotation) linear problem (2.3) restricted on the subspace

of divergence free vector fields reduces to the following 3 x 3 matrix for the n-th Fourier component:

00 0
waM' =w, | 0 0 =1 (2.6)
01 0

where zero eigenvalue corresponds to the quasi-geostrophic mode. We use the extended notation
m = [mi1, ma/as, ms/as, 0],0 < as <1,

and similarly for n, k. We introduce the orthonormal basis of the divergence-free subspace for n-th Fourier

mode:

n 7 5o 2 2
N2 M nifg  Rong  —ni — 03
o [ Tl ] o [muw Al Al C) P = e = 100,01 (27)

The vectors pog, pom, p1k etc. are defined similarly. The vectors pox, pik, por are orthonormal cyclic
vectors for the matrix S restricted on the divergence free Fourier subspace; let P; be the projection on

divergence free vectors in the Helmholtz decomposition (for the velocity component):

=3¢

i

The p;, are the Craya-Herring basis for the purely stratified problem, already used by Riley et al. (1981).

PSnpon = 0; PySppin = —dnpan; PaSnban = @npin; ¢n = (2'8)

=

In the case f # 0 we use the following orthonormal basis

! 1
Gon = —(Nénpon + f&npan), in = Pin, G20 = ——(Nénpan = [&npon) (2.9)
where
€n = % W = N?¢2 + f2€2. (2.10)
n

The vectors qon, g1 and g2, are orthonormal and form a basis in the space of divergence free vector fields.
In the case ny = ny = 0 (this case corresponds to taking horizontal averages) we have from (2.9) (we have
used the fact that p1,|n,=n,=0 = (%, \/Li’ 0,0))

1 1 1 1
_a_aoao ; n = _a__aoa
(\/5 \/§ ) q2 (\/5 \/§

where n = (0,0, n3) denotes wavenumbers for which ny; = ny = 0. In this paper we use the overbar notation

gon = (0,0,0,1); q15 0) (2.11)

for the operation of horizontal averaging

1 21 p2n/as
F(t = — Ft dxidxs. 2.12
( a$3) 271_271_/&2/0 /0 ( a$1a$2a$3) 14T ( )
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For the matrix of linear problem
M, = NS, + fR, (2.13)

the vectors (2.9) form a cyclic basis since, after projection on divergence-free vector fields via Helmholtz

decomposition:
PsMqon = 0, PaMq1n, = —wngqan, PaMg2, = wnqin, (2.14)
and, as w2 = f2 forny =ny =0
PiMgom =0, PaMgin = —fq2n, PaMqon = fqin. (2.15)
Any arbitrary divergence-free vector field UIL can be written as
UL = V240n + Vigun + V24on. (2.16)

We shall use the variables V to denote vector of coefficients corresponding to Ul: V,, = [V V! V2] =
(VO V], VI, = [V.E V2]. We denote by TI$C the projection onto ¢, (quasi-geostrophic mode):

n

HQGUT(x) = Z Vn0q0nein~x’ HSGUIL = Vn0q0n~

Similarly, we define the projection I14% onto ageostrophic component:

TA9UT () = Y " (Vilqun + Viigen)e™*, TATUL = Vigin + Vi gon.

n

The action of the linear propagator on the Fourier components E(#) can be written in V-variables
E@®)[V® V'], = exp(wntM,)[V?, V'], = [V? exp(wntT)V']. (2.17)

Here J, M/, are given by

0 0 0
, 0 —1
M,=|o00 -1 [, I= : (2.18)
1 0
01 0
We have
exp(wpJt) = cos(wnpt)I + sin(wpt)J. (2.19)

Obviously, E(t) represents vector rotation in V1, V2-plane; V% component (called 3DQG) is not affected.
Note that the relation between U and V variables is given by

Ve =Ul - qon, Vi = UL -q1n, V7 = UL - gon. (2.20)

n
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Clearly, V)" = =V, for real U(xz).
The Boussinesq equations (2.1) in Fourier representation in V' variables can be written in the cyclic

basis (2.9) as

QVio = —i Z Qirizisyinyiz _y (MV,)P (2.21)

kmn
k4+m=nii,iz

where 1,149,453 = 0,1,2, M’ is the matrix M in V-variables given by (2.18). The coefficients il e

kmn

determined from the equations
W’ = (9 1) (Gizm - Gion)- (2.22)

The coefficients Q117272 k +m = n, are explicitly given by a straightforward computation using (2.9), (2.22).

kmn
For the coefficient describing interaction of 0-modes (quasi-geostrophic) we obtain (n’ Am/ = nymg —namy).

Y <1
000 N ' Am
kmn —

(N2 3 -1 + f2 nzma). (2.23)

wiwmwn k||l

Since skew-symmetric in k,m component of Q%° makes no contribution to Eq. (2.21), we can use the
following Q20 in Eq. (2.21):
Nk A i} i} Nuwp|m| k' A
0, = V(N 7 ) = A (2.24)
oxmen 1] onn 17
where we have used |m|*w?2 = N2|W/|> + f?m3. The coefficients Q0 given by (2.24) is the familiar
coefficient in 3DQG equations written in cyclic basis. Other coefficients in (2.21) have the form
012 _ ngmgn(];’//\m/)z 102 _ fN(mSI;’/ 'm/_]%3|m/|2)(ﬁ3ﬁ/ '];7/_];73|77/|2) (2 25)
N T gt |kl | 17| | |
1 _ INEnEn (K AT gy PNEEF M) 2.26)
T gkl g R[] |
o MO i) Giging? i+ [ PF ) o Neall A ) (g’ i — kol [?)
kmn — T AT ’ kan_ Tl oo st [ s ’ (227)
wi ||| [| k[ |7 wi k|||’ [|7/]
02n N A (N2 |20 |2 4 FPrngiam’ -i2) a0 F2PN1g(K' A)(ks|i!|? — ign’ - k)

Wiwmwn ||| |2 || Wiwimwn k|| ||| ||
In addition, we have coefficients associated with the operation of horizontal averaging, where k = (0,0, ks):

000 _ 000 _ 000 _ 4. 012 _ 021 _ 011 _ 022 _
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Also, Q2% = () (4 # 0,45 # 0) and

kmn

N@pmon

We note that Vlfl‘/ﬁ = Vi V/,j1 and then collecting terms in Eqs. (2.21) we define the symmetrized

A011  _ 011 101 ~012  _ 012 102 ~021  _ 021 201 ~022  _ 022 202

It implies that

; ; ; . NG on ;

3 The limit equations describing reduced dynamics

We write classical rotating Boussinesq equations using the variables V' in the basis (2.9); these equations

have the form (see Egs. (2.21))
OV +waM, V, = (B(V, V)),. (3.1)

Here M’ is the linear propagator operator corresponding to inertio-gravity waves given in cyclic V-variables
by Eqs. (2.17)-(2.18). We introduce this linear propagator directly into nonlinearity in (3.1) using the
change of variables V = E(—t)v, V,, = exp(—w, M/ t)v,, where v = [v°,v! v?] and M’ is defined by (2.18).

Boussinesq equations (3.1) written in v variables have the form
dv =B(t,v,v), B(t,v,v) = EQ)B(E(—t)v,E(-t)v). (3.2)

Equations (3.2) are explicitly time-dependent with rapidly varying coefficients. The following equations
describing reduced dynamics are associated with Eqgs. (3.2) (BMN, 1996b):

Ow = B(w,w), ]~3(w(t),w(t)) =limp_ oo % /OT B(s, w(t), w(t))ds. (3.3)
Clearly, when represented in Fourier modes, the right-hand-side of (3.3) will be determined by resonances
twy t W T w, = 0 within terms of the type exp(i(fwy Twm twy)s), see (2.17), (2.19). Projecting Egs. (3.3)
on the 3DQG mode qq,, corresponding to the zero eigenvalue of the linear problem, we find that the limit
equations (3.3) describing reduced dynamics contain classical 3DQG equations as a completely decoupled
subsystem, a result already published in BMN (1996b). This confirms the QG decoupling of the reduced
equations after their projection on the mode corresponding to the zero eigenvalue which was also proven for

the rotating shallow-water equations and 3D rotating Euler equations (Mahalov and Marcus, 1995; BMN,
1995; BMN, 1996a; BMN, 1996b). In the case of 3D rotating Euler the reduced equations were projected
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on the subspace of 2D-3C fields by means of the operation of vertical averaging. Two-dimensional, three
components refer to fields that have three components and depend on two variables. These are MFT (material
frame indifferent fields) uneffected by rotation (Ristorcelli et al., 1995; Speziale, 1989). In the case of rotating
shallow-water equations reduced equations were projected on the quasi-geostrophic mode and decoupling of
quasi-geostrophic equations was obtained and published in Mahalov and Marcus (1995) before Embid and
Majda (1996). In the important paper by Warn (1986) the same result for shallow-water equations had
been obtained based on formal two time scales expansions and Ertel’s theorem. To prove the decoupling for
Boussinesq equations, Embid and Majda (1996) also used Ertel’s theorem, which does not give insight into
the structure of the ageostrophic dynamics in the context of Boussinesq equations.

Now we ouline a new proof of decoupling of 3DQG equations in (3.3) We refer to BMN (1996a,b,c) and
Mahalov and Marcus (1995) for detailed proofs of splitting in Boussinesq, 3D Euler and rotating shallow-
water equations. By (3.2) and (3.3) the only active triadic interactions in the reduced equations (3.3) are
those satisfying the relation fwj, +wmy, £ w, = 0. We note that projection of Eqgs. (3.3) on QG mode
(which corresponds to zero eigenvalue of the linear problem) leads to the additional constraint w,, = 0. Then
the conditions d+wy + wym £ wy, = 0 and wy, = 0 reduce to 2-wave interactions wy = w,,. For N? + f? the
condition wy = w,, is equivalent to the condition |k’|/|k| = |m/|/|m| (equivalently, ¢x = ¢m; see (2.8)).

Clearly, reduced equations (3.3) projected on QG mode involve only the coefficients Q?ﬁéa with i3 = 0

000

(n = k+m). One trivial solution of wy = wy, 18 wy = wy, = 0 which corresponds to the QG coefficient Q).

An important observation is that other terms involving the coefficients Q12" (i; # 0 or iy # 0) in Egs. (3.3)
are annihilated when the resonance condition ¢, = ¢,, is used. For the Boussinesq case, the detailed proof
can be found in BMN (1996b).

Thus, in the reduced equations (3.3) the total velocity splits into the limit quasi-geostrophic field

UT(t, z1, x2, z3) satisfying (3.12) and ageostrophic component satisfying equations of the type:
~ 1
atWAG = BZ(U (t), WAg) =+ B3(WAg, WAg). (34)

In this paper we are interested in the situation when the quasi-geostrophic (balanced) field is present and
it is dominant. We explore the implications of the existence of the vortical mode (at mesoscales the vortical
mode represents quasi-geostrophic flows) on the dynamics. The major shortcoming of many existing theories
is that they neglect the interaction with the vortical (=potential vorticity carrying) mode of motion (Miiller
et al., 1986). The results of the study by Lelong and Riley (1991) provide further evidence that the role
of the vortical mode in influencing the evolution of strongly stratified flows may be significant and should
not be neglected. According to Miiller et al. (1986), interactions among internal waves and vortical modes

loom as one of the important questions to be addressed by a strong interaction theory. In BMN (1996 a-e)
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and here we present such strong interaction theory based on rigorous KAM type mathematical analysis and
small divisor estimates.

In BMN (1996b) and in Section 6 it is shown that the main contribution to resonances in the reduced
equations (3.4) is given by the term Bz(ij (1), wag). We arrive at the same conclusion empirically comparing

orders of magnitude of the term BQ(UT(t), wage) and Bs(Wag, Wag):

B
| B(YV:&GaWAG” ~ |W~ATG| ~ 0.1 (3.5)
IB2(U (t),wac)| |U|

for synoptic scales at midlatitudes (e.g. Holton, 1992). Then equations become linear in w4 with coefficients

depending on arbitrary quasi-geostrophic field INJT (t):

atWAG = Bz(ﬁT(t),WAg). (36)

The numerical work of Bartello (1996) also shows that resonant 3-wave interactions are of secondary impor-
tance in the overall picture of interactions when both rotation and stratification are present and Bu = O(1).
They do not lead to slow-fast energy exchange and are difficult to resonate. Rigorous proof of this result was
given in Babin, Mahalov and Nicolaenko (1996b) using small divisor estimates and is discussed in Section 6.
Geostrophic adjustment takes place via catalytic interaction involving a “rotational” (“vortical”) mode and
two inertial-gravity modes. As in Bartello (1995), an interaction is “catalytic” in that it does not influence
slow modes, but serves to transfer fast AG energy downscale.

The bilinear form B(w, w) in Egs. (3.3) can be conveniently represented in the cyclic basis (2.9). Now

Y is simply projection of w

we write the resonant (limit) equation for w = w%yq + wlq; + w?qz where w
on QG mode. Then w® can be defined from the quasi-geostrophic equation; w’' = (w!, w?) is found from

inertio-gravity wave limit equation. The quasi-geostrophic equation is given by

Nwp || k' A’
atwg = Bl(woawo)”a Bl(woawo)n = -t Z ng%’?nwgwgw ng(r))gn = w (37)
e weon 117
and in the case ny = ny =0
B (w’, w’); = —i Z QY wiwl =0 (3.8)
k4+m=n
since Q°° = 0 by (2.29). From (2.29), we also prove that p and the horizontal averages of velocities do not

enter the QG equation (3.7); that there are no W% or wl . This is not true for the operator splitting in the

limit f = 0, F << 1, Bu>> 1.

We introduce variables ¢, U (quasi-geostrophic potential and velocity, not to be confused with the cyclic

basis vectors qon, ¢1n and qan):

Gm = wm|im|wl,, Ux = N[—ka/az, k1,0, 04./wi|k|*. (3.9)

19



The quasi-geostrophic stream function is defined by ¢, = §x N/w?|k|?. Recalling that w?|k|>/N = |k’ |>+uk2,
w = f/N we find a familiar formula which relates 1/: and ¢ in physical space

07 -
— (Vi + 17 =) = q. 3.10
(i)l = (3.10)
Using (3.9), Eq. (3.7) is written in the form:
Ouin = =i Y (Ug-m)gm. (3.11)
k4+m=n
4(t, z) obeys in physical space the 3D quasi-geostrophic equations (Bourgeois and Beale, 1994)
D
—q¢=0 3.12
th ( )

where % is the advective derivative, based on the quasi-geostrophic velocity and ¢ is the quasi-geostrophic
potential.

Now we describe adiabatic invariants associated with horizontal averaging. Let us denote 7 as (0,0, ng).
We note that in the case n; = no = 0 we have goz = [0,0,0, 1] and, therefore, w? = ps. Now the fact that

11820

wne = 0 implies %pﬁ = 0. Then horizontal averages of p are conserved by the reduced equations. We

outline the proof of this important new result, that is %pﬁ = 0. First notice that Q% = 0 from (2.23).

kmn

Also, Q10 = Q220 = Q210 = (. Then p;, the n-th Fourier coefficient of p(t, z3) satisfies:

kmn kmn kmn
Ope= Y Qb - wiu); (3.1
E4+m=n,n'=0

the right hand side is null on 2-wave interactions ¢y = ¢, with n’ = 0. Clearly, in (3.13) no 3 wave
resonances are omitted. This result holds for all resonances. The proof is very closely related to the one for
exact QG splitting (see discussion before Eq. (3.4)) but does not follow immediately from Ertel’s theorem.
This exact conservation law of the reduced equations correspond to adiabatic invariant of the full Boussinesq
equations. In particular, it shows that in the asymptotic state (after several periods of oscillations associated
with wave motions) horizontally averaged buoyancy variable will reach a constant in time value. It confirms
that horizontal spatial averages of buoyancy variable p(z3) are time independent in the asymptotic state;
this is frequently done in many investigations addressing the impact of vertical variability of buoyancy on the
dynamics (e.g. Howard, 1972; McWilliams and Weiss, 1996; Doering and Constantin, 1996). Below we find
the impact of buoyancy phases associated with vertical shearing of this invariant on ageostrophic dynamics
in non-hydrostatic situation. Similarly, we prove that U!, U? undergo rigid Q-rotation in the Bu = O(1)
limit (this result is true for all resonances including 3 wave resonances) and they are true adiabatic invariants

only if Q@ = 0.
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The limit equations for w!, = [w}, w?] include w},, w?

2 and already found w?. Therefore, taking into

account k, m -symmetry, we always label w® variable by k; therefore to write the resonant equations it suffices

011 012 021 022

to consider Qp ., Quirns @ioans Qroey (recall that all 1-wave and 3-wave interactions are non-resonant, cf.

Section 6). The resonant relations reduce to wy = wpm,n = k + m for the “symmetrized” Q?ﬁéa defined

in (2.31). The original Boussinesq equations for v/ = [I*%v can be written in the form
Oyvy, = —iexp(wntd) Z VS Qe nm €XP(—wmt IV, + HﬁGQ-I—(Nt, V. (3.14)
k+m=n

Here the matrix kan is defined by

. Agn A221
kan = 2012 2022 ) (315)
kmn kmn
Aginln etc. are given above in (2.31)-(2.32), J is given by (2.18); Q+(Nt, V), are non-resonant terms. Taking

into account (2.19), we see that resonant interactions are generated by squares of sines and cosines and are

given by the matrix Q = (Q - JQJ)/Q, namely:

3011 3022 3012 3021
kmn + kan’ _kan + kan

7021 012 3011 3022
T YWkmn + kan’ kan + kan

Computing explicitly resonant terms in (3.14) we obtain reduced resonant equations for the limit w, with

wy, = (wy, wy)
’ . N¢m¢n v ’ . ~ ’
dw, = — R kspr Iw,, — ot . 3.17
tWhp ¢ Z W 3Pk IW ¢ Z wk( ) kanwm ( )
k+mm:_n,an:D k+mm:_n,knl¢0
We recall that the resonance condition w,, = w, 1s equivalent to the condition ||le| = ||le| (or ¢m = ¢y) and
||”;f’|| = ||7;3|| (or |&m| = [€n], see (2.10)). In Eqs. (3.17) w°(t) is an arbitrary solution of quasi-geostrophic

equation with initial data projected on QG fields and kan are geometric coefficients given above.

In Egs. (3.17) N‘i’”‘z’" kspy represents phase correction impact of vertical shearing of g on ageostrophic
dynamics. Clearly, (aixaﬁ),; = ikspz. This phase correction implicit in (3.17) is equivalent to the spectral
Doppler phase shift. It can be calculated explicitly as a solution of the linear problem:
) . Némon: _ )
6twn =1 Z #k’gpk JWm (318)

Pm = én
k+m=nkl =0

In particular, in (3.18) for all as, ag the condition ¢,, = ¢, is equivalent to msz = —ngz, m’ = n’ (for m = n,

pr = 0). It implies that ks = 2n3, ¢me, = ¢2 in (3.18). With the above remark on the convolution in
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(3.18), Eq. (3.18) reduces to the system coupling (n’, n3) and (n’, —n3):

Ng2

0eW s sy = +i20255(0,0, +2ns) W) (3.19)
whose fundamental solution involves cos(¥,t) and sin(¥,t) with the spectral phase 9,:
92 = 4n3|p(0,0, 2n3)|2(]\;¢2)2. (3.20)
Then in this particular case solutions of (3.17) have the integrating phase factor
exp(:l:iNqSTzl 273]p(0,0,2n5)| 1) (3.21)

Wn

Here 2713p(0,0,2n,) is vertical shearing of horizontal spatial average of p which is an adiabatic invariant (time

independent) in the asymptotic limit.

012

The term containing vertical shearing of g in (3.17) is associated with the coefficient kan

given
by (2.32). Tt involves the vertical shearing operator d/dxs (multiplication by ks in Fourier space). In
this respect Egs. (3.17) should be useful in detailed investigations of vertical mixing in times of high shear.
Doppler effects such as shifting the frequency of an internal wave can be measured experimentally through
Egs. (3.21). We have shown the existence of a statistical dephasing effect, induced by turbulent processes on
inertial-gravity waves. Turbulence acts to renormalize both frequency and viscosity of waves (Legras, 1980;
Carnevale and Martin, 1982). Legras (1980) has investigated turbulent phase shifts of Rossby waves coupled
with QG turbulence. Using EDQNM theory and numerical simulations he showed that in the turbulent
domain turbulent frequency shifts can be as large as 30 % of the wave frequency given by linear theory. We
effectively generalize this work to the most general interactions of inertio-gravity waves with 3DQG turbu-
lence. In BMN (1996a) we presented formulas for frequency shifts induced by turbulence on inertial waves in
the context of 3D rotating Euler equations. The turbulent shifts for rotating shallow-water equations with
the 3 term were analyzed in BMN (1996 c, e).

The equations (3.17) for w s are also invariant under vertical averaging, ks = mz = nz = 0; this follows
from the equivalent condition for two wave resonances, w,, = w, implies |ms|/|m| = |ns|/|n|. Denote by
WA the vertical average of w . Careful inspection of the coefficients A?ﬁéa in (3.16) shows that they all

reduce to zero, except for:

2 _ K AW
" LI

Q= Q (3.22)

o
psil}
Rl
psil}

Moreover the Craya-Herring basis reduces to ¢,= = py=z, ¢,= = (0,0,—1,0), ¢,= = (0,0,0,1). Hence Wag
reduces to the vertical averages of vertical velocity and buoyancy variables. Vertical averaging is usually

denoted as the barotropic component (Bartello, 1995). The above establishes that these quantities are
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purely passively advected by the 2D-2C vertically averaged quasigeostrophic velocities. The linkage with the
dynamical Taylor-Proudman theorem at Bu = 0 is remarkable, as T3 and p are indeed passively advected
by the 2D-2C vertically averaged Euler fields in that context too. It confirms that barotropic components
U3 and p of the field take no part in the geostrophic adjustment process.

Further, for almost all Bu and domain aspect ratios as, Bo(wga, wag) in (3.17) splits in Fourier space

into uncoupled, restricted interaction operators on 4 rays families

mi :|:1 0 0 n
ms | =A| 0 £1 0 ny | (3.23)
ms 0 0 +1 ns

for ng # 0. This is obtained by further reducing resonances wy, = wy,. In Egs. (3.17) together with
the condition (3.23) direct cascades of energy are allowed for w4 through Ba(wge, wag). Wave energy
cascades toward smaller scales and is subject to strong dissipation in AG mode. Vertical shearing operations
in Ba(wga,wag) are conveniently expressed in terms of divergent velocity potential x. We recall that
x and 1 are related to Uy by the formula U, = e3 x Ve + Vi x. The form Ba(wgg, wag) takes an

especially simple form in the Craya-Herring cyclic basis. In this basis the first component of w4 is simply

3
the divergent velocity potential x = (—A);l 6(2];‘;; or in Fourier space
M3 1 1
= -t — W 3.24
o 20
where #/ = (n1,n2/as), and the components of the full field in the Craya-Herring basis are (w2, w}, w?).

Here w? is the component of the quasi-geostrophic mode and w), w2 are the ageostrophic components.
The coefficients Nginln = Qg%nln, Qg%nzn, Ngfnln in (3.15)-(3.16) explicitly yield terms x, = —i%ﬁw}n,

Xn = _ZIT;_I |r%'|wrll which reflect vertical shearing dynamics, and contribute to imbalance dynamics. These

terms come from QUL Q912 Q921 Q20! QL given by Eqs. (2.25)-(2.27) and are carried over to the

Qg%nln, Agﬁn’ Agfnln in Egs. (2.31) and in Egs. (3.15)-(3.16). The important role of the divergent velocity
potential x in the AG reduced Eqs. (3.17) can be compared with that in the classical balanced models (Gent
and McWilliams, 1983a, b). There a classical expansion in small parameters is carried. In some sense, our
QGH+AG Egs. (3.17) describe near balanced and some unbalanced regimes.

Wave energy cascades towards smaller scales along rays in Fourier space and is subject to strong dissipa-
tion in the ageostrophic mode. We have an upscale energy cascade via (0,0, 0) triads corresponding to 3DQG,
downscale cascade of energy via (0, i2,73), iz # 0, i3 # 0 triads corresponding to catalytic interactions. Tri-
ads (0, iz,43), 12 # 0, i3 # 0 flush the gravity wave energy downscale in a nonlinear geostrophic adjustment

process. When simulations are initially balanced, gravity modes act to damp large scale rotational modes

via transfer into intermediate scale gravity modes, and via a subsequent downscale wave cascade involving
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the catalytic interaction. Effective eddy viscosity on fast modes is larger than that on slow modes confirming
Bartello et al. (1996). Spectral eddy viscosities for QG and AG fields with explicit dependence on the rota-
tion/stratification parameters are calculated. They correspond to 2-wave resonances on the linear diffusion
operator. Let 1 and vs be the kinematic viscosity and the heat conductivity, respectively; the ratio vy /v
is known as the Prandtl number. Then effective spectral eddy viscosities vge and v4¢ are given by

2

|ﬁ/|2

WP+ 77

|72

VISR (3.25)
Emrer:

vog(n) = vs + (11 — 1v2) vag(n) =1 + (2 —11)

where yt = f/N. Let’s consider the case of a large Prandtl number 11 /v >> 1. Then Eqs. (3.25) can be
approximated by the following expressions

7?2 252

| vag(n) =v __HAns (3.26)

I/Qg(n) = |h =1 .
[ g

~ P Ry
Egs. (3.26) clearly show that QG and AG modes are effected by viscosity differently. For example, va¢g(n)
increases if vertical shearing increases (large ns) while vga(n) decreases. The dependence of effective eddy
viscosities on ¢ = f/N is also of interest. In the stratification dominated regime (¢ — 0) we have vga(n) —
vi,vag(n) = 0. The fact that v4g(n) — 0 is reflected in lack of control of AG dynamics (vertical shearing) in
the strongly stratified limit. The situation changes dramatically in the rotation dominated regime p — +00.
In this situation we have vag(n) = v1, vgg(n) — 0. The fact that v4(n) approaches a nonzero finite value
allows us to control AG dynamics in this limit. Remarkably, vgg(n) — 0 does not spoil the situation since
QG dynamics is globally controlled even for zero viscosity (Bourgeois and Beale, 1994). In the physical case
Pr = v1/vs # 1 and naively adding the usual viscosity to 3DQG equations is incorrect in the geophysical
limit.

As noticed by Métais and Herring (1987) and Métais et al. (1996), the presence of stratification yields
the formation of very strong vertical variability which tends to destroy the vortices vertical coherence. In
stably stratified, rotating flows, quasi-two-dimensional organized vortices structures are only observed in the
presence of a well-defined horizontal density (temperature) front leading to baroclinic instability.

The impact of even small viscosity onto ageostrophic dynamics in (3.17) is strikingly different from that
on the quasi-geostrophic equations (3.12) confirming the predictions of Métais and Herring (1989). In (3.12)
modified with vgg dissipative small scales interact nonlinearly with an anisotropic inertial range with inverse
cascades and intermittencies in the quasi-geostrophic turbulence. Inviscid ageostrophic dynamics are driven
by the chaotic quasi-geostrophic field, albeit on restricted rays in the Fourier wavenumber space (but no
restriction to the direct energy cascade). Fnergy is conserved separately on each family, but not enstrophy.
Direct cascade of energy is enhanced along each ray family, in contrast to the inverse cascade for the QG

component spectrum. This is confirmed by numerical observations of Métais et al. (1996).
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4 Intermediate asymptotic regime of strong stratification and weak
rotation

In this section only ko /as will be denoted by ks and ks/as by ks, |k|? = k34+k2/aZ+k32 /a3, |K'|? = ki+k2 /a2
Intermediate asymptotic regime of strong stratification and weak rotation is conveniently characterized in the
Craya-Herring cyclic basis using expansions in a small parameter p = f/N = fo/Ny. Equations describing
balanced dynamics with control of vertical shearing are obtained by expanding Q0 = % (k' Am')

in Egs. (2.24) in powers of . We have

k,Z
wilk| = v/ N2|K)2 4+ f2k2 = N\/J|F|2 + p2k2 = NIK|(1 + 2|k/|2/¢ + 0(uh)), (4.1)

N 1 —i(1 k3
wilkl IR+ p2k2 K] 2K

with similar expressions for wp,|m| and wy|n|. Here O(p?) denote terms in Taylor series of order p* and

|2u “+0(uh) (4.2)

2
higher. Expansions (4.1) are valid provided that “fﬁuz << 1. We note that {, = 1/|ks| and {, = 1/|k'| are
2
the vertical and horizontal spectral length scales, respectively. Then the condition “fﬁuz << 1 1s equivalent

to the condition Buy = NZIZ/f21? >> 1. Here Bu, is the spectral Burger number.

000

000 we obtain after cancelling N? and suppressing

Substituting expansions (4.1) in the expression for

terms of order u* and higher

000 |m/| ’ ’ [ m3 k3 n3 4
= k' A 1+ = — — O . 4.3
Clearly,
000 |m/| / /

The appearance of the operator k3/|k’|? etc. in Eqgs. (4.3) is not surprising since it is related to the inversion
of (3.10). Indeed, for small p we have

N 2 2

, 07, ) .0
b= —(Vi+ 1 55) = =V (1= 12V 5 =5) + O(u?) (4.5)
dx3 Oz

where the operator —V’ Zaax is —k3/|k'|? in Fourier space.

Eqgs. (4.3) show that the regularizing effect of rotation involves the inverses of horizontal Laplacian.
The effect of these operators on the dynamics is to decrease the horizontal scale. This is in fact what 1is
observed in numerical simulations investigating the effects of rotation on turbulence (McWilliams, private

communication).
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Egs. (3.7) now take the form
Oy’ = Z QY (p)wiw?, (4.6)
k4+m=n

where Q%9 (1) is given by Egs. (4.3). For every pu # 0 the coefficients Q%°° (1) have explicit dependence
on vertical variability parameters (ks, ma, ng in Fourier space). For pr = 0 dependence on vertical variable
disappears and we obtain complete decoupling of dynamics at every vertical layer with the vertical coordinate
z3 appearing only as a parameter. At any given vertical level the dynamics is described by 2D Euler
equations with different pressures at every vertical level. There is no control of vertical shearing which can
grow exponentially. We obtain quasi-2D unbalanced dynamics of vertically stacked pancakes which was first
described by Lilly (1983). For u # 0, as shown below, Eqgs. (4.3), (4.6) have a conservation law which allows
to control vertical shearing for all times. Our results reveal the regularizing effect of weak rotation which
introduces vertical coherence; the mechanism of the regularization is through coupling of dynamics in the
vertical direction. This regularization differs from regularizations based on vertical viscosity.

We note that the coefficients Q%0 (1) have the following important skew-symmetric property

P (1) = = Q00 (1) (4.7)

Egs. (4.6) have a conservation law which simply expresses the fact that potential vorticity is conserved if

» and summing over n we obtain

Oy lwh(t) =0 (4.8)

written in ¢ variables. Multiplying (4.6) by w®

since
k4+m=n k+m+n=0
n (4.9) we used the fact that Q%% (u) is anti-symmetric (Eqgs. (4.7)) and wiw? wl is symmetric under

interchange of k and n. The conservation law for w?(¢) implies conservation of energy for the projection of

the field on

2
n3
qon(p) = (1 — 37 ,|2u *)Pon +u| |P2n +0(4®). (4.10)
Then using the conservation law (4.8) and following Bourgeois and Beale (1994) one can prove global existence
of solutions of Eqs. (4.3), (4.6) with full control of vertical shearing for all times.
The coefficients Q“gf“”( ) given by Eqs. (2.25)-(2.28) can be expanded in powers of p (see Appendix).

Then we obtain

1 |m’| m3 k32 n2
000 — (000 ) K ' 3 RF3 73 4 411
kmn(ﬂ) kmn(0)+2ﬂ |k’||n’|( /\n) (|m/|2 |]<7/|2 |n/|2)+0(ﬂ )a ( )
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1, E3(k" Am')(ngman’ - m' + |m'|2|n/|2 + ngmsk’ - m' — nzks|m’|?)

2011 _ Aot _ 419
A R 1 k' Am | k2 m2 n2
022 _ A022 Ll 3 3 3
5 (K" Am')(manzm’ - n' + mzks|n’|? — manzn’ - k') 4
O 4.13
Wl T[] +ol), (413)
A B Am')? + (msk’ - m! — ks|m/|?)(nsn’ - k' — ks|n'|?)
012 — _9 msns( 3 4.14
R k’/ /\m/)Z
021 —4 mans( 3 4.1
o ) = 0 oy 1) 1)
where
/ R EAm . .
w0 0) = L ey, @z (0) = SR Qne o) = @i, (0) = o, (4.16)
Ll L4
. A m! foa! 121,712 Eom! — nak 2
21”1”(0) _ ( m')(ngman’ - m' 4+ |m’|*|n']? + namsk’ - m’ — ngks|m’| ) (4.17)

K[! [[n"[[m] ]

Our regularized system for w,, = (w2, w!), w!, = (w} w?) follows from Eqs. (3.7), (3.16)-(3.17). It has the

n

form
Oy = =i Y Qi (wRwn, + 0, (4.18)
k4+m=n
o Nomdn , _ / . 0 ~ / 4
Pm = dn " Pm = én
ktm=n ktm=n
where
D (1) = Qi (1) + QR (1), Gromn (1) = = Qi (1) + Qi (1) (4.21)

with components of the matrix kan(u) given by formulas above. For every fixed value of the parameter y
vertical shearing is controlled in the reduced equations (4.18)-(4.20) for all times. The system of equations

(4.18)-(4.20) will be called the regularized Boussinesq system in the regime of strong stratification and weak
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rotation. It allows us to study the regularizing effect of weak rotation on quasi-2D dynamics of decoupled

pancakes and its impact on AG dynamics. For g = 0 we obtain
Grmn(0) = Qian (0) = Q2 (0) = 0, Dienn (0) = Qia, (0) + Q132,(0) (4.22)

where Q911 (0) and Q22 (0) are given in (4.16)-(4.17). We recall that w) and w2 are projections of the

kmn kmn

total field on the divergent velocity potential (y) and the geostrophic departure mode, respectively. The

matrix Qy,,,(0) is diagonal and equations (4.19) for w! and w? are coupled for g = 0 only through the
¢m¢>n

phase term ¢ kspr Jw;n which is associated with vertical shearing of horizontally averaged buoyancy
variable (adlabatlc invariant). For g # 0 the modes w} and w2 are coupled as can be seen from Eqs. (4.20).
Non-diagonal terms are proportional to Gpmn(1t); Taylor series expansion of Gpmy, (1) starts with terms of
order p.

In order to obtain a simple reduced system suitable for practical numerical implementation, terms of
order g in Egs. (4.19) are neglected. Then two scalar equations for w! and w? in (4.19) are coupled only

through the phase term and can be solved in parallel.

A simplified reduced system consists of three prognostic equations:

k4+m=n
o Nomeon, _ ! . 0 !
Ow, = 1 Z Tk’gpk Jw,, —i Z wy (1) Dimn (0)w,,,. (4.24)
bm = on bm = on
kdm=n kdm=n

The scalar coefficient Dy, (0) in (4.24) is given by

E'Am' ngman’-m' + |m'|?|n’|?

(4.25)

|| [m![[n[[m|n]

Am’ ip (4.25) represents advection

In the derivation of (4.25) we used the relation ¢,,, = ¢,. The first term kl|k'|

in physical space. Now we analyze the role of the second 0-order term

y(n,m) = ngman’ -’ + [’ |n’|" = [ A 4 (nm)(n” - m/). (4.26)

/|| [[m|n] /|| [[m|n]

The coefficient y(n, m) can be easily computed for 4 ray families. For example, we obtain from (4.26)

y(n,m) =1 if my = Any, ma = Ang, mg = Ang; (4.27)
if mi = /\nl, mo = Anz, m3 = —/\77,3. (428)

V(n’m) =
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2 2 2
mitms—ms3

e in Egs. (4.24) is due to polarization induced by waves;

The appearance of a wave type operator
it corresponds to wave dynamics on the reduced family of 4 rays.

The advantage of prognostic equations (4.23)-(4.24) over the diagnostic vertical velocity (omega) equa-
tion (1.17) is in improved accuracy. Near balance and some unbalanced regimes can be treated by Eqs.(4.23)-
(4.24). These regimes cannot be treated by the diagnostic equation (1.17) where filtered initial data is
required in order for (1.17) to be a reasonable approximation of (1.16).

For ;1 = 0 Eqs. (4.18) coincide with the familiar quasi-2D Euler system which can be seen by introducing
variables § and Ugap (quasi2D potential and velocity):

Gm = |m/|wy,, Ugapk = [—ko, k1,0, 0]qx/|k'|*. (4.29)
In this notation (3.7) is written in the form of 2D Euler equation which depends on 23 as on a parameter:
OeGn = —1 Z (Uq2p k- m)Gm. (4.30)

k4+m=n

Then the velocity Ugap (¢, 21, 22, £3) satisfies quasi-2D Euler system
9 Uqap + (Ugap + Ugap) - V'Ugap = —=V'p, V- Ugap =0 (4.31)

which depend on z3 as a parameter, V/ = [01,82]. In Egs. (4.31) Ugap denotes horizontally averaged
velocity which is an adiabatic invariant of 3D Boussinesq equations in the strongly stratified limit (in the

absence of rotation).

5 Phenomenological analysis at asymptotic limit of strong rota-

tion/stratification in the Burger number of order one situation

At asymptotic limit of strong rotation/stratification, the existence of two disparate time scales indicates a
phenomenological analysis similar to that of rotation (Zhou, 1995; Mahalov and Zhou, 1996) may be appro-
priate. The aim of this approach is to estimate the averaged effect of rotation/stratification on turbulent
energy transfer. The introduction of the anisotropic time scale based on the aspect ratio parameter in the en-
ergy spectrum is an improvement over our previous phenomenological analysis of rotating turbulence. In the
context of the quasi-geostrophic equations for a Boussinesq fluid in a uniformly rotating and stably stratified
environment, McWilliams et al. (1994) showed that their solutions exhibit significant anisotropy associated
with the emergence of many long lived coherent vortices that control the flow evolution. Anisotropy of

quasi-geostrophic field impacts on the ageostrophic gravity wave field through Eqs. (3.17).
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Among more mundane immediate consequences, exact operator splitting of the reduced equations (3.3)
reach the very roots of the mechanisms of wave-vortex interactions. Let us designate by ( ) the ensemble
averaging for any field Ut, and by U} = U — (U") the fluctuations. Then the Reynolds stress operator

becomes:

(Woa,r, Woar)+ (Wagr, Wagr)+2Woar, Wag F). (5.1)

The last tensor we shall designate as the anisotropic phase coherence tensor. It correlates the fluctuations of
the ageostrophic W 4g-field with the quasi-geostrophic Wgg-field. The anisotropic phase coherence tensor
is the key player in the control of rapid 3-D pressure fluctuations. The dependence of the full Reynolds stress
tensor on the intrinsic mean vorticity does not vanish in the limit of strongly rotating/stratified turbulence,
as neither the field W 4, nor the “anisotropic phase coherence tensor” vanish. Long-lived phase coherence
is an important part of turbulence (Bartello and Holloway, 1991; Herring and McWilliams, 1985).

In order to infer the form of the inertial-range spectrum, it is necessary to estimate the magnitude for
the triple correlations. In general, 73, the time scale for decay of triple correlations which is responsible for
inducing turbulent spectral transfer, may depend on any relevant turbulence parameters. Because energy is
conserved by the nonlinear interaction and a local cascade has been assumed, € is independent of k. Local
cascade also implies that € 1s explicitly proportional to 73 and depends on the wavenumber and on the power

of the omni-directional energy spectrum. A simple dimensional analysis leads to

€ = A’rs(k)k*E? (k) (5.2)
where A is a constant. We recall that wy; = Noz% + foz% As in Section 4, we defined the vertical and
the horizontal spectral scales as [, = ﬁ, Iy = |kl,|. If n = 1, /lp = |k'|/|ks] is the ratio of these length scales

then wy = \/NOQUQ% + fozﬁ

In the strongly rotating/stratified case when both effects are of the same order (Burger number of order
one situation), the time scale for r3(k), the decorrelation of the triple velocity product, is the controlling
parameter to influence the energy transfer process. In a regime of high Reynolds numbers and low Rossby

and Froude numbers, turbulence is characterized by two disparate time-scales: a short anisotropic time scale

associated with the rotation/stratification frequency mon = 1/\/]\702 ngil + fozﬁ (fo = 28 is the Coriolis

parameter) and a nonlinear time scale. We find that a direct application of 73 = Tqn resulted the energy

spectrum for turbulence subject to strong rotation/stratification:
E(k) = Can(rqn €)%k (5.3)

We now consider the number of the non-dimensional parameters needed. For the turbulence in equilibrium

the Rossby /Froude numbers are the only relevant parameter controlling the effects of rotation/stratification
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on the flow. However, for the non-equilibrium situation, a new non-dimensional parameter such as (7'5]%, t) is
required. Here the dimensionality is considered by introducing the aspect ratio. Our analysis suggests that
the energy transfer process in the limit of (7'5]%, t) — oo and small spectral Rossby/Froude number (strong
rotation/stratification) is as follows. There is inverse energy transfer by 3D QG component (McWilliams,
Weiss and Yavneh, 1994). In the meantime, there is also a direct energy cascade governed by the equation
for the inertio-gravity wave component. The energy spectrum of the full field Ut is given by E(k) =
CQN(T(;J%;E)l/Zk’_Z.

Following the usual assumption of EDQNM, we consider that the lifetime of triple correlations in rotat-
ing/stratified turbulence might be more accurately treated by taking into account the possibility that these
correlations decay because of the influence of both wave propagation and nonlinear interactions. The simple

choice

1 1 1
k)~ k) T (R (5:4)

satisfies the appropriate limiting cases: 73(k) — 7, without rotation/stratification and 73(k) — 7Tan with
strong rotation/stratification. The introduction of the anisotropic time scale based on the aspect ratio pa-
rameter in the energy spectrum is an improvement over our previous phenomenological analysis (Zhou, 1995;
Mahalov and Zhou, 1996) since now the model can distinguish the anisotropic nature of rotating/stratified

flows. The generalized inertial range energy spectrum is
E(k’) — ZZA_4/3€2/3/<7_5/3, (55)

where Z is given by

Z:%(\/?—i— \/—Y—|—2\/Y2—|—4Zo ) (5.6)

= i e i e

The parameters A = 0;3/4, kaonv = 7513,/26_1/2 and Zg = A2/3T5]§(€k2)—1/3 = [‘L‘kkﬂ]z/?’. The strong

rotation/stratification limit then leads to Con = 1/A = 1.22 — 1.87 for the typical range of Kolmogorov
constant. These equations reduce to the classical Kolmogorov “-5/3” spectrum when Zy — 0 (so that 7 — 1),
and to our rotation/stratification modified “-2” spectrum when Zg >> 1 (so that Y —» 0, 7 — Zé/4). For
intermediate rotation/stratification rates the spectrum varies smoothly between these two limiting forms,

according to the increase of the controlling parameter Zy with increasing ratio kon/k. This confirms the

numerical simulations of rotating stratified turbulence by Métais et al. (1996). In their numerical simulations
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the geostrophic energy spectrum was steeper than k=2 at the small scales, whereas the ageostrophic energy
spectrum was much shallower. As a result, the large scales are dominated by geostrophic energy, while the
reverse 1s true of the small scales. There is a spectral gap between QG and AG spectrum with AG spectrum
being shallower than the typical k=3 QG spectrum; it varies smoothly between k=2 and k~5/3 which is in
agreement with numerical simulations of Métais et al. (1996), Bartello et al. (1996).

The equation which determines the spectral eddy viscosity, vp(k), is given by
e = vp(k)S? (k) = vr (k) E(k)k>. (5.8)
Therefore, the rotation/stratification dependent eddy viscosity can be estimated as

vr (k) Zivo[f?(k)]1/21_+_;_1/2’ (5.9)

where v is a constant and y = k3E(k)/N?. The inertial range wavenumber k can be related to the turbulent
kinetic energy K and dissipation rate ¢

_ Ek)
k= K3/2

For the inertial range spectrum, Eq. (5.9) can be rewritten in physical space:

S
O ¢ 14 0.36K/(rane)’

vr(z) = v (5.10)

The eddy viscosity above is only appropriate for homogeneous turbulence without mean velocity gradients.

The spectral time scale is an important measurement. The Kolmogorov hypothesis implies that the
energy-containing range excitation does not affect energy transfer within the inertial range. Therefore, the
average rate of energy dissipation is identified with the rate of spectral energy transfer and the rate of energy

—1/2

input. The nonlinear (or eddy turnover) time-scale, 7, (k) = [k* E(k)] , 1s then equivalent to the spectral

transfer time, 7. Zhou (1995) has shown that

(k) = % [:;’152]) (5.11)
or more generally,
(k) = %—%l((/f))' (5.12)

Therefore, the time for the spectral energy transfer is increased to a value greater than 7,,;; thus the nonlinear

energy transfer is suppressed by rotation/stratification.
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6 The devil’s staircase of convergence results

In this section we give a short presentation of new regularity and strong convergence results for rotating
Boussinesq equations in the Bu = O(1) regime; these are substantial improvements over the corresponding
ones in BMN (1996b) in that much less regularity is required for the initial data, with the Sobolev space
Hy being the worst and Hi being the best case. Here H, designates the space of functions with square
integrable derivatives up to order «. Any strong convergence result uniform in the parameters Ro, or
1/N cannot circumvent control of small divisors and sharp estimates of both near 3- wave and near 2-
wave resonances. The o(1) non-uniform convergence results in H3 of Embid and Majda (1996) cannot be
extended to O(1/N) uniform error without control of such near-resonances. Here we investigate the density

and probability of both 3-wave and 2-wave resonances as function of the three geometric parameters:
Bu= N?a3/f*, 02 = 1/a2, 03 =1/d3. (6.1)

For rare, non-generic values of these parameters, the limit equations for the ageostrophic field wa¢ can be

nonlinear:

0w ac = Ba(woa(t), wag) + Ba(Wag, wag); (6.2)

the bilinear form Bs can easily be computed in the Craya-Herring cyclic basis and 1s not detailed in this
section for conciseness sake. In Bj, the domain of summation K*, (k,m) € K*, k 4+ m = n, depends on
(Bu,1/a3,1/a3) = (Bu,02,0s); that is K* = K*(Bu,0s,03). For every fixed 0 = 1/a3 and 03 = 1/a3,
the summation set K*(Bu,f2,03) is not empty when Bu € ©%(f2,03); the set ©F is very thin, namely
it is countable. We call it a strict 3-wave resonant set. In Corollaries 6.1 and 6.2 we give an estimate of
the very small probabilistic measure of near 3-wave resonances. We mostly study the typical case when
3-wave interactions are absent, that is Bu & O%(62,03) and Bz(wag,Wag) is identically zero. When
Bu € O%(02,03) is strictly resonant, Bs is non-zero and strongly depends on Bu; the sets K*(Bu, 2, f3)
with different Bu do not intersect (highly nontrivial result from our study of the small divisor problem).
This implies that the operator Bz depends on resonant Bu discontinuously, every point Bu € ©%(02,03) is
a point of discontinuity of the operator Bs. Since Bg is not zero, solutions of the limit system with general
watial data discontinuously depend on Bu as well. As solutions of the original rotating Euler-Boussinesq
equations depend on Bu continuously (on a small time interval [0, T1]), the convergence to solutions of the
limit equations cannot be uniform in Bu, as, az. This paradox we call the “Devil’s staircase of convergence
results”.

For Bu ¢ 0%, Eqgs. (6.2) reduces to the linear equations for catalytic interactions (3.16)-(3.17). At the

same time, the equation strongly depends on 5 = 1/a2, since the 2-wave resonance condition w,, = wy
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is equivalent to |n'|/|ms| = |7/|ns|. For every irrational 6, B splits in Fourier space into uncoupled,
restricted interaction operators on 4 ray families as in (3.23). For every resonant rational point f; € 0%, By
includes more interactions (much larger, but finite number of Fourier rays), so indeed rational 85 are also
points of discontinuity for By and further contribute to the Devil’s staircase of convergence. An important
observation is that 2-wave resonances are controlled by &5 only, not by Bu or as. This follows from the fact
that wy, = wy, implies |mg|/|m'| = |ns|/|7']. In contrast, 3-wave resonances are controlled by Bu uniformly
in 0y and 03; although strict resonant values Bu = O%(02,03) depend on #y and 03, we prove that the
estimate of the measure of almost resonant Bu does not depend on 65 and is uniform in 3. The sensitive
dependence of convergence results on the parameters Bu and as, as was missed by Embid and Majda. In
fact:

Lemma 6.1:

Let N? = f? (that is Bu = a2). Then there exist no 3- wave resonances for 1/9 < a2 < 9.

The main convergence result of this section (Theorem 6.1) shows that the convergence is uniform and
the error is of order (1/ps 4+ 1/p3)/N when 6, & ©52, Bu € O (62,03), with the Lebesgue measure
meas(0'5’) < pz, meas(05?) < ps with pa, ps arbitrary small. ©% and ©4° are the sets of near resonant
3 waves and 2 waves. Here || - ||o designates the norm in the Sobolev space H,.

Theorem 6.1:

Let By, < Bu < By, By, <1< Byr. Let 0 < vy,v5 <1 (including v1 = v = 0), Bu ¢ 0% (62), 02 ¢ O4>.
Let « > 3/2, 06 —a > 7, Mos > 0, po, 3 < 1. Let ||UT(0)||0 < My,. Let UT(t) be an exact solution of
the 3D Euler-Boussinesq equations. Let Wgg(t) be the solution to the QG equations (3.7), (3.11), (3.12)
with initial data HQGUT(O), and wag(t) the solution to the limit ageostrophic equations (3.17) on the 4
rays (3.23) with initial data HAGUT(O). Let E(t) be the inertio-gravity waves linear propagator. Then for
0<t<T,

10T (1) = Woa(t) — B(—t)wag(1)|la < Ca3(1/pa + a3/ps)/N, for f < N,
< CRogaz(1/ps + a3/us), for f > N; (6.3)
where T depends on only on My, ; C depends only on Mys, o, By (for f < N) or By, (for f > N).
Theorem 6.2:
For 1@ UT (t) — Wge(t), under the same conditions as in Theorem 6.1, but with the weaker smoothness
o — a > 5 we have the estimate, for both inviscid and viscous cases:
U (t) = Wqa(t)|la < CRogas/ps, for f> N

< Cai/(Npus), for f < N. (6.4)
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The same estimates hold for ||ﬁJr (t) — WQg(t) - ﬁAG(t)HQ, but with ¢ — o > 4. Here ﬁT designates
the vertical averaging.

Remark 6.1:

For the full error, the above requires smoothness of initial data in Hg. For the convergence of the QG
component, only H7. This is a substantial improvement over the Hz7 in BMN (1996a) and the H;g in BMN
(1996b). The convergence under the Hg smoothness for the vertically averaged fields is rather remarkable,
as it involves both the QG component and the AG component. It clearly shows that the Dynamical Taylor-
Proudman theorem established in BMN (1996 a, b) has a modified version for the Bu = O(1) case, coupling
QG and AG component.

In Theorem 6.1, the measures ps and ps are equal to the measures of the excluded sets of a3 and Bu;
they reflect estimates of the measure of almost resonant as or Bu. In fact, such estimates imply the “Arnold
Tongues” of Figure 2:

Corollary 6.1:
Let N > f and 1/Bu, 63 = 1/a2 be the resonance parameters, with 1/By; < 1/Bu < 1/Bp,, and B, = O(1).
Then

p3(1/Bu, 8y, 63) = Cas, (6.5)

where C' is an absolute constant independent from 05, 65 and C' = O(1). The probabilistic (normalized)
measure of near 3-wave resonances in 1/Bu on the interval [0,1/B,,] is CB,a3, and the factor a}/us within
the error estimate in Theorem 6.1 reduces to C'.

Corollary 6.2:

Let N < f and Bu, 03 = 1/a2 be the resonance parameters, with 0 < Bu < a3. Then

/,L3(BU,92,93) :C’*ag, (66)

where C* is an absolute constant independent from @s, 5, C* = O(1). The probabilistic (normalized)

measure of near 3-wave resonances in Bu on the interval [0, a3] is C*a3, and the factor a3/ps within the

error estimate in Theorem 6.1 reduces to C*.

Remark 6.2:

For N > f, 1/Bu = (f/Nas)? is the natural resonance parameter; Bu — +o00, N — 400 in the strongly

stratified limit. For N < f; Bu — 0 as f — 400 and Bu = (Nas/f)? is automatically smaller than a3.
Corollary 6.1 proves that the probability (normalized measure) of near 3-wave resonances at Bu =

O(1) is very small for the atmosphere on synoptic and mesoscales; H & 10 km, and even for borderline

small/mesoscales L ~ 50 km, a3 ~ 4 x 1072, The 3-wave almost resonant sets for such domains are very

sparse, quantitatively confirming Bartello’s (1995) picture.
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Using approximations of solutions of 3D rotating Euler-Boussinesq equations by solutions of the QG and
AG equations, we have proven global regularity of solutions of 3D Euler-Boussinesq equations with arbitrary
large initial data on arbitrary long time intervals. The global existence theorems in Hs for QG equations
obtained by Bourgeois and Beale, as well as the conservation of energy on the restricted uncoupled families
of 4 rays for W 4¢ ensure global existence for Wgg + Wy, Contrary to Bourgeois and Beale (1994), we
do not require any “prepared” initial data:

Theorem 6.3:

Let 1/Bu ¢ ©%(02,03), 62 ¢ ©52, By, < Bu< By. Let N> f, vy =v3 = 0. Let ¢ > 9, and M, > 0,
T* > 0 be arbitrarily large. Then there exists N* = N*(M,,T*, us, 2) such that for ||UT(0)||0 < M, and
N > N*| there exists a unique regular solution UT(t) of the 3D rotating Euler-Boussinesq equations which
belongs to H, for 0 < ¢ < T*. For M, fixed, T* — +oco as N* — 400 with explicit uniform dependence
of T* on My, ps, p2, N*. Simultaneously, we can take arbitrary large (but bounded) set of initial data:
M, — 400 if N* = +o0, for fixed T7.

If we do not require explicit uniform estimates of T (equivalently N*) in terms of the geometric param-
eters as, az and the measures pio, 3, we can obtain the following “Poor Man’s” long-time existence theorem
with weaker smoothness assumptions, valid for non-resonant Bu, but holding for all #; and a; and all 85
and ag (no constraints on 2-wave resonances):

Theorem 6.4:

Let N > f,1n =v2 =0, By, < Bu < By, 1/Bu & O%(62,03). Let My > 0, 77 > 0 be arbitrary large.
Then there exists Ny such that if ||UT(0)||4 < M4 and N > Ny, there exists a unique regular solution UT(t),
0 <t < T’ of the 3D rotating Euler-Boussinesq equations, which belongs to H4 as 0 <t < T’. For My fixed,
T" = 400 with N; — +oo. Simultaneously we can take arbitrary large (but bounded) sets of initial data:
My — +oo if Ny — +oo, for fixed T”. The above holds for all as, a3, 0 < as,az < 1.

Finally, using techniques from BMN (1996a, b, d) and the fact that the effective spectral eddy viscosities
lie between vy and vo (see Section 3), we obtain the regularity for all times for the 3D rotating Boussinesq-
Navier Stokes equations (the so called “primitive” equations, not to be confused with equations associated
to hydrostatic pressure hypothesis). This theorem describes the situation when N is fixed, large enough and
By, < Bu < Byy. The Navier-Stokes equations are forced by a force F(¢) smooth enough. The situation is
that of non-smooth and arbitrary large initial data in Hg. Then weak Leray solutions exist with maybe a
blow-up in Hi.

Theorem 6.5:
Let v1 > 0, va > 0, N > f, By, < Bu < By, 1/Bu € Of(02,03). Let ||[F||la + ||0:F||1 < Mo4 for all

t >0, ||UT(0)||0 < My. Let T = M /vy, where vy, = min(vy, va); T depends only on ||UT(0)||0, vy, Us.
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Let N’ be a number which depends only on Mgy, v1, v, as, az. Then for every fixed N > N’ and for any
weak solution UT(t) of the 3D rotating Boussinesq-Navier-Stokes equations which is defined on [0,7] and
satisfies the classical energy inequality on [0, T], the following proposition is true: U' () can be extended to
0 <t < +oo and it is regular for T <t < 4o00; it belongs to Hy and ||UT(t)||4 < C1(Mog, v1, va) for every
t > T. It F is time-independent there exists a global attractor of the “primitive” equations of geophysics,
which 1s bounded in Hy4, has a finite fractal dimension, and every weak solution is attracted to the global
attractor as ¢ — +o0.

Remark 6.3:

No “preparation” of initial conditions is needed, contrary to the special restricted results of Chemin (1995).
This theorem holds for all as, 0 < a2 < 1. This theorem resolves problems of existence of attractors of for
the “primitive” equations of geophysics raised by Lions, Temam and Wang (1994). These authors are able
to give only conditional theorems assuming a priori regularity in 3D. We demonstrate the regularizing effects

of mixed rotation/stratification in the Bu = O(1) regimes.

7 Concluding remarks

In this paper, we have treated the problem of strongly stratified limit of rotating Boussinesq equations via two
complementary approaches. First, we have illustrated the procedure for obtaining the dynamical decoupling
of the vortical and inertial-gravity wave components of the total flow field. The ‘split’ of the energy transfer
of the vortical and the wave components is established. As a result, analysis of 3D Boussinesq system has
been reduced to several simple, well defined steps. We give explicit phase formulas for the Doppler phase shift
induced by the interaction between the waves and the mean flow. In the regime of strong stratification and
weak rotation we proposed regularized reduced equations with control of vertical shearing for all times. The
regularizing effect of weak rotation principally differs from previously known regularizations which are based
on vertical viscosity. Second, we have utilized the fact that the time scales of vortical and inertial-gravity
wave components are disparate. Several useful results can be deduced without going through the steps
outlined above. For ageostrophic dynamics, we demonstrate gradual unfreezing of energy cascades as Bu
varies from zero to infinity. The energy spectrum and the anisotropic spectral eddy viscosity can be derived
with an explicit dependence on the anisotropic rotation/stratification time scale. This time scale, in turn,
depends on the aspect ratio parameter (ratio of the vertical and the horizontal length scale). Our analysis
provides a potential context for investigations of the Garrett-Munk spectrum induced by the interaction

between inertio-gravity waves and turbulence (Garrett and Munk, 1979).
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A Appendix: Dependence of the coefficients Q}'?* on u = f/N

kmn

The coeflicients iliiﬁ?’(u) given by Eqgs. (2.25)-(2.28) can be expanded in powers of g = f/N as follows

km
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